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INTRODUCTION 

General 

Soils believed to be of aeolian origin and composed predominantly 

of particles classified as silts (0.074 to 0.002 mm grain size) are 

designated "loess". Loess deposits are found in regions throughout the 

world, one major region being in the midwestern United States. Loess 

is the surficial sediment covering approximately 66% of the state of 

Iowa. These soils are best known to engineers for their ability to 

remain stable in high, near-vertical cuts and for their tendency to 

exhibit rapid reduction in volume upon saturation. These charac

teristics are not typical of all loessial soils, but have prompted 

much of the research on loess. Little attention has been given to 

other aspectS-of loessiaJL-Soil behaviorincluding-the potentials for 

expansion upon wetting of some of these soils. It is not surprising, 

then, that discovery of a "mushy" sometimes flowing, soil at depth in 

unsupported boreholes in loess deposits would attract the attention 

of researchers. 

The term "loess mush" has been given to this soft, sticky, high 

water content soil that on occasion has squeezed into boreholes, 

inhibiting sampling- There are few published accounts of soils like 

this being encountered in boreholes in loess, which would imply either 

that the condition is not widespread, or that it has been encountered 

but not reported. There is also the possibility that the condition 

is related to seasonal water table fluctuations so that it does not 

always exist at a given site. 
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The significance of the behavior of such a soil from an engineering 

standpoint is in the considerably reduced undrained shear strength and 

increased compressibility that it is likely to exhibit. This is of 

particular importance if the "mush" condition is of a transient or 

seasonal nature where it might not be discovered during a site investi

gation but may appear later after some alteration of stresses has occurred 

as a result of construction. The soil might also exhibit a tendency to 

liquify when subjected to dynamic loads, making the condition of paramount 

concern in earthquake-prone regions where loess soils predominate. 

The term "loess mush" is very descriptive. However, Handy [13] 

has suggested that "liquid silt", being more general, would be the 

preferred appellation since mush-like conditions no doubt occur in 

other -silty soils. There are y for ins tance, soft, silty clays belong

ing to the general category of soils called soft clays. These soils 

are known to have formed in fluvial, lacustrine, glacio-lacustrine, 

and deltaic environments; and in bays, lagoons, tidal flats and marshes. 

The liquid silts discussed herein occur in a geologic setting that is 

much different from those of the other soft soils: the liquid silts 

have been found in relatively uniform loess deposits occupying upland 

positions. 

Previous Investigations 

Hallberg et al. [12] appear to be the first to report having 

encountered "loess mush". They describe the material, hypothesize in 

regard to its consolidation state, and present quantitative data re

garding the soil index properties. Their soil profile with supporting 
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engineering data is shown in Figure 1. They describe the liquid silt as 

being of a consistency "...somewhere between play-dough and thick gravy." 

They suggest the liquid silt is underconsolidated and note that the 

natural water content is in excess of the liquid limit water content. 

Lutenegger [21] reports "mush" and "semi-mush" conditions in soils 

sampled at 12 different sites in east-central Iowa and northern Missouri. 

A summary of data from all previously reported "semi-mush" and "mush" 

soils is provided in Table 1, and the general locations of all sites 

known to exhibit these conditions is shown in Figure 2. 

Ruhland [27] created a "mush" condition artificially in the labora

tory by placing air-dry loess in a vertical plastic tube with the lower 

portion immersed in water. The model was designed to simulate a 5.49 

m ( 18. 0 f t)- thick, loess -deposit- _w±th_ a perched, water table at its base_ 

related to a stiff, impermeable substrata. A drawing of the apparatus 

is shown in Figure 3, with test results given in Figure 4. He concluded 

that the conditions necessary for development of "loess mush" are 

3 3 
(i) Maximum in-situ dry unit weight of 14.61 kN/m (93 lb/ft ), 

(ii) Minimum loess thickness of 2.44 m (8.0 ft), and 

(iii) Presence of perched water table at the base of the loess. 

With these conditions being met, "loess mush" will occur, according to 

Ruhland, if the water content is at or above the soil liquid limit 

water content. 

By comparing in-place water content to liquid limit water content 

as a criterion for identifying the liquid silt condition, one can see 

in Figure 4 that a broad zone of the material developed in the lower 

portion of the capillary fringe, extending below the water table. 
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MOISTURE % (BY WEIGHT) CLAY % STRATIGRAPHIC 
UNIT 

DEPTH 

2.0-

LOESS 

MOL-MDL 
96% 

MUSH 
ZONE 10- WATER TABLE 

7/10/78 

11-MOU-MDU 1.47 0.79 

100% 
3.5-

12-

PEDISEDIMENT 

TILL 

14-
100% 

4.5-
15-M = MOTTLED 

0 = OXIDIZED 
D = DEOXIDIZED 
L = LEACHED 
U = UNLEACHED 

64LH1 

D = BULK DENSITY-g/cc 
e = VOID RATIO 

P = PLASTIC LIMIT 
L = LIQUID LIMIT 

S% = PERCENT SATURATION AS MEASURED ON 7/10/78 

Figure 1. Geotechnical data from site 64-LHl (from Hallberg et al.[12]) 
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Figure 2. Location of previously reported liquid silts 
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Table 1. Summary of properties of liquid silts from previous investiga
tions 

Site 
Depth 
m 

Weathering 
Zone 

Water 
Content 

% 

Dry 
Density 
kg/m 

Solids 
Specific 
Gravity 

Void 
Ratio 
e 

ILH 3.30-3.76 MDU — 

2LH 5.56 OU 28.1 1500 0.805 

3LH 2.94-3.05 MOU 25.0^ 
22.1^ 

1390^ 
1400^ 

5LH 2.69-2.74 OL 29.6^ 1420^ • 

6LH 3.86-4.17 MOL 

7LH 2.64-2.72 MDU 25.9^ 
26.3^ 

1550^ 
1550^ 

lOLH -3.05-4.17- — OL — — - - " " 

12LH 2.24-2.79 MDL ' 32.5 1400 

2MW 5.18-5.46 DL 26.1^ 
23.2^ 

1550^ 
1550^ 

7MW 2.54-2.62 MOL 27.7^ 1500^ 

8MW 2.11-3.68 OL 27.5^ 1510^ 

BMW 4.95-5.03 OL — 

9MW 1.82-1.85 MOL 29.1^ 1480^ 

9MW 2.52-2.59 MOL 28.1^ 1500^ 

64-LHl 2.8 
3.0 

MOL-MDL 
MOL-MDL 

36 
36 

1360^ 0.96^ 

^Indicates values from closest sample above and/or below depth shown. 
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Saturation 
% LL PL LI Sand Silt 2yni clay 

0.4 79.3 20.3 

94.5 0.4 80.3 19.3 

72.1^ 0.8^ 79.1^ 20.1^ 
64.4^ 0.4^ 79.4® 20.2^ 

88.6® 0.3® 75.0® 24.7® 
0.3® 76.2® 19.7® 

1.2® 75.8® 24.7® 
1.4® 78.9® 19.7® 

93.9® 0.4® 76.5® 23.1® 
96.3® 

1.3 76.1 22.6 

95.5 — — — 1.3 76.8 21.9 

93.9 0.8® 81.4® 17.8® 
84.5® 0.6® 81.5® 17.9® 

92.3® 1.8 81.9 16.3 

95.3® 0.3 80.5 19.2 

0.8® 82.5® 16.7® 
1.1® 79.4® 19.5® 

95.2® 0.7® 72.3® 27.0® 

94.5® 10.4® 69.5® 20.1® 

96® 36 26 1.0 2.0 72 26 
36 28 1.0 2.0 74 24 
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OVERBURDEN LOAD 

PLASTIC TUBE 

SILT SOIL COLUMN 

WATER BATH 

PEDESTAL 

Figure 3- Silt column apparatus (from Ruhland [27]) 
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Figure 4. Geotechnical data from laboratory model (after Ruhland [27]) 
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Perez [25] believes that this condition results from expansion of 

clay minerals upon wetting, giving a saturated, low-density, honey

combed soil fabric as shown in Figure 5. Her interpretation is based 

on Ruhland's density data (see Figure 4) that show a decrease in dry 

density after capillary saturation occurred. 

Perez was concerned with the consolidation state of the liquid silt 

because it has properties very similar to loess that is known to be 

collapsible. Specifically, the clay content, consistency limits, and 

dry density of the liquid silt are of the same magnitude as those of 

medium-density collapsible loess. She was interested in showing whether 

the liquid silt would collapse since such a tendency would indicate the 

existence of some mechanism capable of sustaining, even after saturation, 

the metas table soil fabric - responsible - for the collapse phenomenal. 

Numerous one—dimensional consolidation tests were conducted on undis

turbed liquid silt specimens, and there was no evidence of collapse. 

Lobdell [19] performed similar tests on loess from the state of 

Washington, called Palouse loess, believed initially to be collapsible. 

He found that this soil, with a dry unit weight ranging from 14.61 to 

14.50 kN/m^ (93 to 98 Ib/ft^) and degree of saturation of 85% to 96%, 

was not collapsible. 

The fact that neither of these loessial soils is collapsible is 

perhaps directly related to findings of Leonards and Altshaeffl [18] 

as summarized by Altshaeffl [1], who notes that "any clayey soil can 

collapse under load when wetted if it is partly-saturated at the time 

of wetting." Collapse potential is therefore related to degree of 
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SILT GRAINS 

CLAY MATRIX 

SILT GRAIN 

CLAY BONDING 

AIR DRY SILT AND CLAY 
DURING DEPOSITION 

B) SATURATED EXPANDED SILT-CLAY 

Figure 5. Mechanism of formation of liquid silt structure 
(from Perez [25]) 
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saturation — clayey soils that are at or near saturation under existing 

loads will not collapse under additional loads. 

Summary 

The occurrence of zones of liquid silt within loess deposits is 

relatively wide-spread as shown by Lutenegger's work. [21]. Liquid silt 

and semi-liquid silts were found in east-central lo^ra and northern 

Missouri. Ruhland [27] compiled data from the sites as found by Lute-

negger [21] and Hallberg et al. [12] and suggested that liquid silts 

could be found in loess deposits of 2.44 m (8.0 ft) or greater thickness 

overlying impermeable glacial tills or paleosols, provided the dry unit 

3 3 
weight of the loess is less than 14.61 kN/m (93 lb/ft ) and the 

natural water content is at or greater than the liquid limit water 

content. Perez [25] showed that the liquid silts are not collapsible 

and suggested that expansive clay minerals play a key role in their 

formation. 
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PRESENT INVESTIGATION 

Objectives and Scope 

At present, only qualitative information is available for identi

fying liquid soils. As a result, the exact same soil might be identified 

as a liquid silt by one investigator and a semi-liquid silt by another. 

Therefore, one objective of the present work is to develop guidelines 

for the identification and classification of liquid silts. The primary 

objective, however, is to gain sufficient understanding of the conditions 

leading to their occurrence so that their distribution may be predicted 

with some degree of certainty. 

This research has been limited to soils in Iowa, where intensive 

sampling has been performed at sites known to exhibit liquid silts. 

Results of detailed laboratory testing on specimens bbtaihed from these 

samples have enabled predictions to be made of the area in Iowa most 

likely to exhibit this condition. A proof of the hypothesized distribu

tion would be provided by sampling soils elsewhere within the projected 

area to confirm the existence of liquid silts, but this work has not been 

done as a part of this research. 

General Procedures 

Samples were obtained at four sites. As noted earlier, these sites 

had been reported to have semi-liquid or liquid silt conditions. 

Sampling was performed in a manner to give a continuous vertical column 

of soil representing the entire profile from just below the solum to 

well below the zones of liquid silt. A piezometer was installed at each 

site to monitor ground water elevations over the period during which 
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sampling occurred (See Appendix D). The effect of fluctuating ground 

water on the liquid silt formation at each site was studied by obtaining 

soil samples when the water table was at its highest and lowest 

recorded levels. 

Standard laboratory tests were performed on specimens obtained from 

these samples. The tests included particle size distribution, consistency 

limits, specific gravity, water content, bulk density, and one-dimensional 

consolidation. Numerous specimens were tested so that characteristics 

and properties of the liquid silt could be identified. 

Site Descriptions 

The general locations of the four sampling sites are shown in Figure 

6, and details of each of the sites are given in Appendix A. Three of 

these sites are ones previbusly described by Hallberg et al. [12] or 

Lutenegger [21]. The fourth site, described by Kemmis et al. [16] had 

been reported informally to have a liquid silt zone. The general loca

tion of these sites and their correspondence to those reported by others 

are indicated in Table 2. The sites are similar in that each has 

Wisconsin-age loess overlying glacial till. 

State Center 

This site, described by Kemmis et al. [16], is near the terminus 

of the Des Moines lobe formed during Wisconsin-age continental glacia

tion. Loess here is 7.41 m (24.3 ft) thick over a paleosol formed in 

older glacial till. The water table, perched above the paleosol, fluc

tuated from a depth of 1.65 to 2.90 m (5.4 to 9.5 ft) during the 12-month 
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Figure 6. Location of study sites 
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Table 2. Reported Liquid Silt Sites 

Location 
Site County State Reference Corresponds to Site 

ILH Benton Iowa [21] Blairstown Site B 
2LH Iowa Iowa [21] 
3LH Iowa Iowa [21] 

5LH Iowa Iowa [21] 
6LH Iowa Iowa [21] 
7LH Keokuk Iowa [21] 

lOLH Benton Iowa [21] Blairstown Site A 
12LH Iowa Iowa [21] 
2MW Carroll Missouri [21] 

7MW Lafayette Missouri [21] 
8MW Lafayette Missouri [21] 
9MW Lafayette Missouri [21] 

64-80L-1 Marshall Iowa [16] 
64-LHl Marshall Iowa [12] 

Blairstovm A Benton Iowa lOLH 
Blairstown B Benton Iowa 12LH 
Gilman Marshall Iowa 64-LHl 
State Center Marshall Iowa 64-80L-1 
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period of observation. A zone of liquid silt was found at a depth of 

between 1.83 to 2.59 m (6.0 to 8.5 ft). 

Oilman 

This is the site that Hallberg et al. [12] first reported as having 

"loess mush." It has 3.90 m (12.8 ft) of loess over an eroded till plain, 

known regionally as the lowan erosion surface. A zone of semi-liquid 

silt was found here at a depth of between 3.35 and 3.96 m (11.0 to 13.0 

ft). The water table fluctuated from a depth of 3.66 to 5.79 m (12.0 

to 19.0 ft). 

Blairstown Site A 

This site is on a loess-mantled upland immediately adjacent to 

and rising abruptly above the "classic" lowan erosion surface. Depth of 

the loess here is reported by Lutenegger [21] to be in excess of 8.69 m 

(28.5 ft). Liquid silt exists from a depth of 2.59 to 3.51 m (8.5 to 

11.5 ft). The water table fluctuated considerably, varying from a 

minimum depth of 1.98 m (6.5 ft) to a maximum depth of 5.12 m (16.8 ft). 

Blairstown Site B 

Blairstown Site A and the "classic" lowan erosion surface are 

located only 3.22 km (2.0 mi) directly north of this site which, accord

ing to Lutenegger [21], has 5.27 m (17.3 ft) of loess over a paleosol 

formed in glacial till. Depth to the water table varied from 2.44 to 

4.60 m (8.0 to 15.1 ft), meaning it fluctuated from above to below the 

semi-liquid silt zone, which was found at a depth of 2.74 to 3.51 m 

(9.0 to 11.5 ft). 
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Sampling 

Undisturbed samples were obtained in accordance with the American 

Society for Testing and Materials (ASTM) designation D 1587 [2] using 

an hydraulically advanced open-tube sampler fitted with a 76.2 mm (3.00 

in) diameter thin-walled sample tube. Immediately after being withdrawn 

from the borehole, each sample tube was removed from the sampler and 

sealed at both ends. Samples were retained in the tube for transport 

from the field to the laboratory, where they were extruded within 24 

hours of sampling and sealed in two layers each of plastic film and 

heavy duty aluminum foil. They were then stored in a room maintained 

at 100 percent relative humidity until removed for testing purposes. 

Testing 

Index properties and characterization 

As the samples were extruded from the sampling tubes, they were 

tested for carbonate content by placing droplets of dilute hydrochloric 

acid at intervals along the sample length. Effervescence was deemed to 

indicate the presence of carbonates. 

Discs of soil were carefully cut from the cylindrical samples at 

regular intervals using a sharp, clean stainless steel ring of known 

dimensions. The masses of these soil discs were determined before and 

after the discs were dried to constant weight in an oven maintained at 

105°C (220°F). Wet, total, or bulk density and natural moisture content 

were computed from these volumetric and gravimetric measurements. 

Consistency limits and specific gravity of the soil solids were 

determined from trimmings made while cutting the soil discs. These 
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tests were in accordance with ASTM designations D 854, D 423, and D 

424 [2]. 

Soil particle size distribution was determined using the pipette 

method described by Lutenegger [21] and Walter et al. [34]. 

Pertinent soil properties and related characteristics determined 

from results of these tests are contained in Appendix B. 

One-dimensional consolidation 

Oedometer tests were performed to determine the loading history and 

confined compression behavior as aids in interpreting the formation of 

liquid silts. Perez [25] performed one-dimensional consolidation tests 

on soil specimens from State Center and Blairstown Site A, and additional 

tests were performed as a part of the present research. Results of rele

vant tests performed by Perez are included herein. 

The procedures outlined in ASTM designation D 2435 [2] were 

followed for these tests with the exception that seating pressures 

smaller than those recommended by ASTM were found necessary. This is 

because the material was so soft that it tended to squeeze from around 

the upper porous stone when the initial loads in the series suggested in 

ASTM D 2435 were applied. Specimens of 63.5 mm (2.50 in) diameter and 

approximately 19.1 mm (0.75 in) thickness were tested in a fixed-ring 

consolidometer. Plots of void ratio versus common logarithm of pressure 

for the series of tests obtained at various depths from borehole 5 at 

Blairstown Site A are given in Figure 7. Additional data are provided 

in Appendix C. 
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Figure 7. One-dimensional consolidation test results for borehole 5 at Blairstown Site A 
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Pre-consolidation pressures were estimated using both Casagrande's 

[6] and Schmertmann's [28] techniques. All specimens were found to be 

normally consolidated. 

X-ray diffraction 

As will be discussed later, a significant increase in void ratio or 

increase in unit weight, occurs immediately below the liquid silt zone at 

all four sites sampled. X-ray diffraction analyses were used to deter

mine whether the clay mineralogy changes at this point, with the liquid 

silts perhaps having higher expansive clay mineral contents than the 

underlying soils. Particle size analysis revealed that there is only a 

nominal 5 percent change in total clay content (see Appendix B). 

X-ray diffraction patterns for samples obtained at depths of 2.59, 

3.00, 3.26, and 4.85 m (8.5, 9.8, 10.7, and 15.9 ft) from borehole 5 

at Blairstown Site A are shown in Figure 8. These plots show peak 

intensity versus diffraction angle for fractionated soil samples, both 

air-dry and glycolated. Specimens were prepared using the procedure 

suggested by Carroll [5]. Fractionation was achieved using a sedi

mentation process whereby a dispersed sample of soil was allowed to 

settle for a specified time in a distilled water sedimentation column. 

A slurry was obtained by concentrating in a centrifuge the soil-water 

solution decanted from the sedimentation column. Droplets of the slurry 

were allowed to air dry on a glass slide to create a specimen for X-ray 

diffraction analysis. A vapor pressure glycolation process was employed. 

The X-ray diffraction data show that the clay minerals montmoril-

lite, illite, and kaolinite are present in all the samples. A qualitative 
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Figure 8. X-ray diffraction patterns 
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estimate of the relative amount of each of the minerals, based on peak 

intensities of the diffraction patterns, reveals that montmorillonite 

is probably the most abundant clay mineral. 

Thermogravimetry 

Liquid silts were found to be associated with loess soils that 

have been leached of carbonates. The usual method of determining 

whether soils are leached or unleached gives only qualitative results, 

which suffices for identifying the extent of soil weathering as it is 

affected by leaching. But more precise measures of carbonate content 

are necessary to determine the degree to which carbonates have been 

removed. Thermogravimetric analysis was used for this purpose. 

Differential thermographs and simultaneously recorded thermogravi

metric data for three samples from borehole 5 Blairstown Site A are 

shown in Figure 9. The presence of carbonate is indicated by the 

simultaneous change in mass and temperature that occurs between 

approximately 675-825°C. These changes in both mass and temperature 

result from formation of calcium oxide and evolution of carbon dioxide. 

The sample from 2.99 m (9.5 ft) depth did not contain any measurable 

carbonate whereas the samples from depths of 3.90 m (12.8 ft) and 

4.85 m (15.9 ft) contained 6.9% and 10.7%, respectively. 
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LIQUID SILT 

Identification and Classification 

There are no specific criteria as to what constitutes liquid silt. 

Silts are known for their tendency to become "quick" when saturated; 

that is, they behave like a viscous liquid and actually flow if disturbed. 

This aspect of their behavior is emphasized by the U.S. Bureau of 

Reclamation [33] in describing characteristics of silts for identifi

cation purposes. Some clays also exhibit this same tendency and are 

called quick clays. Thus it is not surprising to find that Hallberg's 

et al. [12] description of the consistency of liquid silt is very similar 

to a description of quick clay given in a Swedish calendar of 1767 as 

being "A soil consisting of a fine, sandy clay which when saturated 

forms a dough-like, almost flowing mass" (cited in Flodin and Broms 

[10]). Quick clays belong to the category of soils called soft clays. 

The literature on soft clays serves as a source of criteria for 

establishing guidelines for identification and classification of liquid 

silts. Brenner et al. [4] consider soft clays to be any clayey soils 

2 with undrained shear strengths of less than 40 kPa (836 lb/ft ). The 

liquid silts found in Iowa have clay contents (based on clay-size 

particles being finer than 0.002 mm) of approximately 20% by weight, 

a sufficient amount for them to be considered clayey soils. In addition, 

2 their undrained shear strengths may be as low as 2.5 kPa (50 lb/ft ) 

according to Ruhland [27], making it appear that liquid silts can be 

categorized as soft clays. 
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Bjerrum [3], however, defines soft clays as clays that were origi

nally deposited with a loose, flocculated structure. But he fails to 

define which soils he considers to be clays, so there is some doubt 

as to whether liquid silts would be considered soft clays according to 

his definition. 

Liquid silts and soft clays appear to have similar consistencies 

and undrained shear strengths. Because the present soft clay identi

fication criteria are somewhat vague, it is not possible to state 

whether liquid silts may be included in the soft clay category. Even 

if this determination were possible, the criteria are so general that 

identification of liquid silts, per se, could not be made. Therefore, 

it seems appropriate to develop specific criteria for identification 

and classification ofliquid silts-

Undrained shear strength is of obvious significance in any such 

criteria. Since undrained strength of a saturated soil is primarily 

a function of soil dry density or void ratio, either of these parameters 

would served in identifying or classifying liquid silts. Selection of 

the appropriate values for these parameters which would allow cate

gorizing soils according to their liquid silt condition would be, by 

necessity, arbitrary. It will be shown later that there is no one 

single value of void ratio that defines the liquid silt condition, but, 

rather, that each soil has a value that is a function of clay content 

and type. 
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A convenient way of relating soil consistency, or firmness, to 

the natural water content is by use of the liquidity index, LI, 

defined as 

w w 
LI n 2 

P 

(1) 
w. 

T 
w 

where 

w = natural water content 
n 

w^ = liquid limit water content, and 

w = plastic limit water content. 
P 

At LI > 1, the soil, if disturbed, would behave in a manner approaching 

that of a liquid. At LI = 0, the same soil would behave like a friable 

or brittle material. The transition between the two conditions is 

gradual, which accounts for the introduction of such terms as "semi-mush." 

Test data from 70 specimens representative of the four sites 

investigated in Iowa (see Appendix B) were compared to descriptions 

made during sample extrusion that gave qualitative estimates of the 

soil consistency. Data reflecting the properties and characteristics 

of all specimens identified as liquid and semi—liquid silts based on this 

comparison are shown in Table 3. When these data are combined with 

those in Table 1, the following observation can be made concerning the 

liquid and semi-liquid silts: 

(i) Liquidity index, LI > 0.61 

(ii) Degree of saturation, S > 93% 

(iii) 0.805 < void ratio, e < 0.994 

(iv) 2 |im clay content varies from 15:7 to 26.4%. 
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Table 3. Summary- of properties of liquid silts from present investigation 

Site/ Water Dry Solids Void 
Bore Depth Weathering Content Density Specific Ratio 
hole m Zone % kg/m^ Gravity e 

Blairstown 

lA 3.41 MOL 31.1 1450 2.72 0.876 
2A 3.22 MOL 33.0 1420 2.72 0.920 
3A 3.15 MOL 33.3 1390 2.73 0.957 

4A 2.87 MOL 32.7 1410 2.72 0.933 
5A 3.00 MOL 34.3 1390 2.71 0.946 
5A 3.25 MOL 34.1 • 1380 2.71 - 0.958 

6A 3.45 MOL 32.9 1400 2.72 0.942 
7A 3.60 MOL 30.0 1490 2.71 0.823 
8A 3.23 MOL 31.3 1450 2.71 0.862 

9A 2.54 MOL 35.5 1360 2.70 0.993 

Blairstown 

23 2.79 MOL 33.0 1390 2.73 0.971 
2B 3.45 MOL 32.6 1420 2.72 0.914 
3B 2.28 MOL 33.3 1380 2.72 0.968 

Oilman No. 1 

3.30 MOL 33.5 1410 2.71 0.924 
3.45 MOL 34.6 1390 2.72 0.957 

State Center No. 2 

2.29 MOL 34.9 1370 2.73 0.994 
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Saturation 
% LL PL LI Sand Silt 2ym clay 

96.6  32.8 11.3 0.85 0.1 84.2 15.7 
97.5 37.8 18.2 0.74 0.2 77.4 22.4 
94.9 37.3 16.7 0.76 0.1 79.8 20.1 

95.3 35.2 13.7 0.82 0.1 81.3 18.6 
98.2 36.4 15.1 0.86 0.3 78.0 21.7 
96.5 35.6 15.0 0.90 0.5 78.7 20.8 

94.8 36.3 15.6 0.78 0.2 79.3 20.5 
99.0 32.5 11.3 0.78 0.2 82.3 17.5 
98.2 33.1 11.9 0.85 0.3 81.7 18.0 

96.7 36.1 15.8 0.96 0.0 80.3 19.7 

93.0 41.7 22.4 0.61 0.0 75.3 24.7 
96.9 38.5 18.1 0.67 0.2 78.4 21.4 
93.6 37.9 19.6 0.73 0.0 78.7 21.3 

98.3 40.9 19.9 0.63 0.0 73.6 26.4 
98.2 39.9 19.6 0.73 0.0 74.2 25.8 

95.9 38.9 18.6 0.79 0.0 76.7 23.3 
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Also note that, with the exception of four specimens, all are totally 

leached of carbonates. If the specific gravity of solids, G, is 

assumed to be 2.70, the minimum void ratio recorded for these soils 

3 3 converts to a maximum dry unit weight of 14.61 kN/m (93 lb/ft ), which 

is practically the same value suggested by Ruhland [27] as being the 

maximum dry weight that will give a liquid silt condition. This 

seemingly unique value comes about because there is little difference 

in clay content and specific gravity between the soil tested by Ruhland 

and the soil sample having the lowest void ratio in Table 3. 

One-dimensional consolidation tests were performed on undisturbed 

samples of liquid silts as a part of this investigation and the one 

by Perez [25]. Particular attention was given to Blairstown Site A. 

Comparison of preconsolidation stresses determined from these tests 

with existing overburden stresses reveals that these soils are 

normally consolidated. The geostatic stress profile and preconsolida— 

tion stress data are shown in Figure 10. 

In summary, semi-liquid and liquid silts from the sites investigated 

can be classified as normally consolidated soils. They are identified 

as being near saturation with a minimum void ratio of 0.805 and a mini

mum liquidity index of 0.61. The conditions of near-saturation and 

minimum liquidity index could possibly be adopted as general criteria 

for identification of liquid silts, with some refinement being given 

to the liquidity index to separate semi-liquid from liquid silts. By 

comparison, the "threshold" void ratio given is for these specific 

soils and could not be included as part of some general criteria since it 

will vary with soil type. 
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Figure 10. Geostatic stress profile for Blairstown Site A 
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Occurrence 

Development of the liquid silt condition is dependent upon the 

in situ void ratio being sufficient to accommodate a water content at 

saturation that is near the soil liquid limit water content. Clay con

tent and type of clay mineral play a major role in this relationship 

because they affect the liquid limit water content and thus the stage at 

which a liquid consistence would develop if the soil were disturbed. In 

addition, clay type and amount are largely responsible for the consoli

dation characteristic of clayey sediments because clay-size particles, 

with high specific surface, exert a dominant influence on soil 

behavior [22]. 

Skempton [30] compiled data on the gravitational (self-weight) 

- consolidation -behavior-of clay deposits from throughout the world and 

presented it in the form of the two graphs shown in Figures 11 and 12. 

He included, under the general heading of clays, soils with clay con

tents ranging from less than 10% to more than 70%, and with liquid 

limits of from 20 to more than 140. The unique relationship that exists 

between void ratio and effective overburden pressure for each saturated, 

normally consolidated clayey soil of a given liquid limit is clearly 

shown in Figure 11. These same data when plotted in the form of 

liquidity index versus effective overburden pressure as in Figure 12, 

provide an insight into the occurrence of liquid silts in normally 

consolidated soils. For instance, if the lower limiting value of 

liquidity index used to define liquid silts is arbitrarily chosen to 

be 0.75, one can determine from Figure 12 that the corresponding, maxi

mum overburden pressure would range from approximately 20 to 120 kPa 
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2 (420 to 2500 lb/ft ) depending on the consistency limits of the soil. 

3 3 
Based on soil having a total unit weight of 17.33 kN/m (110 lb/ft ), 

these pressures are equivalent to maximum overburden depths of from 1.15 

to 6.92 m (3.8 to 22.7 ft). Thus under no circumstances would liquid 

silts be encountered below depths of approximately 6.92 m (22.7 ft) in 

saturated, normally consolidated deposits. 

The above analysis still leaves the question as to why liquid silts 

have not been found at depths of less than 1.15 m (3.8 ft). This is no 

doubt related to environmental effects such as wetting and drying, 

introduction of organic matter, translocation of clays and all other 

pedogenic processes and mechanisms that alter the upper soils to the 

extent that the set of conditions necessary for liquid silt development 

are never realized. 

Data from Blairstown Site A plots close to the appropriate curves 

in Figure 11, confirming the similarity of behavior between the liquid 

silts and the leaner clayey sediments reported by Skempton [30]. 

The liquid silt condition and its upper and lower boundaries 

appear to be unaffected by location of the water table as long as near-

saturation conditions are maintained within the liquid silt zone. At 

Blairstown Site A, for example, the water table fluctuated from 0.76 m 

(2.5 ft) above to 1.83 m (6.0 ft) below the liquid silt zone. Samples 

obtained when the water table was at these two extremes showed the 

liquid silts were sustained at the same depth regardless of the water 

table elevation. This indicates, first of all, that changes in void 

ratio accompanying changes in effective stress as the water table 
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fluctuates are relatively small over the range of stresses involved. 

For example, the consolidation curve for a liquid silt sample from a 

depth of 2.77 m (9.1 ft) is shown in Figure 13. The field compression 

curve, reconstructed using Schmertmann's [28] technique, is designated 

by line ABC. Point A represents the void ratio when the sample is 

submerged and point B, the void ratio when the water table has dropped 

well below the sample elevation. Void ratio change resulting from the 

maximum water table drop is only 0.003, which is reflected in the 

extremely low value for recompression index, C^, of 0.02. 

Conditions of near saturation, even with the water table at con

siderable depth, also indicate that the soil pore structure does not 

permit free gravity drainage, at least during the four months required 

for the water table to drop from its highest to lowest level at this 

site. If saturation is maintained solely by capillary rise above:the 

water table, negative pore pressures of approximately 26.91 kPa (562 

2 lb/ft ) would result. This corresponds to a 2.74 m (9.0 ft) capillary 

rise, which is the distance from the lowest recorded water level to 

the top of the liquid silt zone. Negative pore water pressures of this 

magnitude would certainly tend to produce a preconsolidation effect in 

the soil, but this was not observed. A possible explanation for this 

is suggested by the relatively subtle decrease in degree of saturation 

in the liquid silt — from 97.5 to 94.5% — that accompanies the drop 

in water table level. The somewhat lower degree of saturation may 

reflect the development of discontinuous water columns at some distance 
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above the water table. This would mean that pore water pressures in 

these upper regions are not a function of capillary rise and that 

pressures of a much lower magnitude than given above would be realized. 

To summarize, the conditions leading to the formation of liquid 

silts at the sites investigated can be explained in terms of the 

observed behavior of saturated, normally consolidated clayey sediments. 

The primary factors that are involved are the overburden pressure, 

which affects void ratio, and the clay content and type of clay mineral, 

which determine the liquid limit water content. The liquid silt 

condition is dependent upon availability of water to the extent that 

the soil is essentially saturated at all times. 

Distribution 

Liquid silts have been encountered at various sites representative 

of the loess found throughout the upper midwestern United States. There 

is nothing at this point to suggest that liquid silts could not occur 

in all loess deposits. The purpose of this section is to take the 

concepts just presented on the occurrence of liquid silts and to apply 

them to Iowa loess on a state-wide basis in an attempt to predict the 

distribution of liquid silts within the state. 

There is a large body of information on Iowa loess. Of primary 

interest is the liquid limit since it is a key to consolidation 

behavior of the soil. Davidson and Handy [8], Handy [14], and Sheeler 

[29] have shown that the liquid limit and plastic limit of loess are 

both primarily dependent upon clay content. These index properties. 
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as a function of 2 ym clay content, for the sites investigated as a 

part of this research are shown in Figures 14 and 15. Plots of the 

mathematical expressions developed by Handy and Sheeler are also shown 

in these figures. Two of these expressions in their original form 

are in terms of 5 ym clay content; conversion to 2 Um clay content was 

made by using the relationship suggested by Handy [14], 

*002 " *005 (2) 

where 

Xqo2 = 2 ym clay content, and 

Xqos = 5 ym clay content. 

It is obvious that these functions do not adequately define the 

correspondence between either the liquid limit or plastic limit and the 

clay content for the soils presently investigated. Linear regression of 

the data from this investigation gives the following expressions 

w, = 1.22 x^n. + 11.39 r^ = 0.89 (3) 
L 002 

'p = -0.08 XQQ2 w = -0.08 + 22.12 r^ = 0.18 (4) 

where 

w^ = liquid limit, and 

Wp = plastic limit. 

The compression curves presented by Skempton [30] and shown in 

Figure 11 are essentially linear over the range of stresses of interest 

2 — 10 to 1000 kPa (210 to 20900 lb/ft ). These curves have been redrawn 

in Figure 16, and the virgin compression curves for selected specimens 
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from Blairstown Site A have been added to the graph to show how well 

Skempton's generalized curves predict the actual behavior of the 

loessial soils. 

The general equation for Skempton's curves shown in Figure 11 for 

liquid limits varying from approximately 30 to 50 is 

e = -0.005 (w^ + 10) log a^ + 0.03w^ + 0.20 (5) 

where 

e = void ratio, 

= liquid limit, and 

= effective vertical pressure (kPa). 

This can be put into terms of clay content by substituting equation (3) 

into equation (5) to give 

e = -(0.006Xqq2 + 1.07) log 

+ 0.037Xqq, + 0.54 (6) 

which has been plotted in Figure 17. Furthermore, the relationship 

Se = wG (7) 

where 

S = degree of saturation, 

e = void ratio, 

w = water content, and 

G = specific gravity, 

can be combined with equation (1) to yield 

e = ̂  [WL LI + w^ (1 - LI)]. (8) 
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This can be put in terms of clay content by substituting equations (3) 

and (4) for the liquid limit and plastic limit, respectively, to give 

e = [1.30xqq2 LI - 10.73LI - O.OSXqq^ + 22.12] | (9) 

Equating this to equation (6) and rearranging terms will result in 

LI = [(0.107 - O.OOÔXQQ^) logCy + 0.037XQQ2 + 0.54 

+ (0.08*002 + 22.12) |] / (1.30Xqq2 " 10.73) | (10) 

Curves for LI = 1.00, 0.75, and 0.50 based on G = 2.70 and S = 100% 

are plotted in Figure 17. The graph can be interpreted as follows: 

Consider a saturated deposit having a specific gravity of 

2.70 and 2 )jm clay content of 20%. If liquid silt conditions 

Ca;rbïtràrîly established as being when LI > 0.75) are to 

exist, the void ratio must be greater than approximately 

0.86. In a normally consolidated deposit, this void ratio would 

occur at a depth of approximately 2.7 to 3.4 m (9 to 11 ft), 

depending upon the soil unit weight. The soil does not have to 

be normally consolidated to exhibit the liquid silt conditions; 

however, it is possible to predict where liquid silts will occur 

only in normally consolidated deposits. 

Note in Figure 17 that for overburden pressures of from 45 to 75 

2 
kPa (940 to 1560 lb/ft ) the liquid silt condition is not particularly 

sensitive to clay content. Notice, however, that a very substantial 

difference in void ratio may result from only a 10 percent change in 

clay content. 
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Figure 17, or variations of it, could be used to predict the depth 

of occurrence of liquid silt knowing only the 2 y m clay content, 

specific gravity of solids, and the applicable relationship between 

clay content and the liquid and plastic limits. The only one of these 

variables that changes significantly on a state-wide basis is the clay 

content, and this has been mapped as shown in Figure 18. 

Although the procedure just described seems relatively simple, it 

must be remembered that Figure 17 is based on the assumption that the 

soil is saturated, but it is obvious that not all loess is saturated. 

Furthermore, clay content is rarely constant with the depth as is 

implied in the map. These conditions present major problems in making 

predictions of the distribution of liquid silts. 

Soil color and color patterns are indicators of soil moisture 

conditions [7]. Constant submergence with a total absence of available 

oxygen will lead to dark gray, blue and green soils. Saturation with 

water of limited oxygen supply results in gray soils in which secondary 

iron compounds may segregate into concretions or tubules. Soils which 

have an abundant supply of oxygen under conditions of good drainage 

will be reddish-brown, yellowish-brown, or olive brown. If drainage is 

imperfect, causing occasional-to-frequent saturation or near-saturation, 

the soils will exhibit the same colors as those with good drainage 

except that gray mottles will be apparent. 

All reported liquid silts, with the exception of those at four 

sites, have occurred in soils whose colors are indicative of either 

continual or frequent saturation. These exceptions were found in 
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soils that are apparently free-draining, which illustrates the possible 

transitory nature of some liquid silts; that is, at these sites, liquid 

silts would not normally exist because, if they did, the soil would show 

evidence of frequent saturation. Trying to predict the distribution 

of soils in which liquid silts exist so infrequently may be 

difficult. 

Soil color data, particularly the occurrence of mottling, from the 

reports of Lutenegger [21], Hallberg et al. [12], Keirunis et al. [16], 

and Davidson et al. [9] were combined with comparable data from this 

investigation and used to define, in a general manner, the zone of 

saturation in Iowa loess. In order to do this, the height of mottling 

above the base of the loess was plotted against loess thickness, as 

shown in Figure 19. A wide range of values is apparent. 

The lower boundary of Figure 19 reflects groundwater conditions in 

the loess of southwestern Iowa as defined by the Redfield, Red Oak, and 

Harlan data. The upper boundary is similarly dependent on conditions in 

east-central Iowa. This suggests that the observed variations in height 

of mottling for a given loess thickness may be related to geographic 

factors, with topography and precipitation being two of these factors. 

Total annual precipitation decreases progressively across the 

state in a northwesterly direction [24]. The difference in height of 

mottling between the Harlan site, in southwest Iowa, and Blairstown 

Site A, in east-central Iowa, can possibly be explained on the basis of 

dissimilar climate since Harlan receives approximately 150 mm (6.0 in) 

less preciptiation than does Blairstown. However, the Redfield and 
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Oilman sites receive the same annual precipitation, but have signifi

cantly different mottling heights. 

Consideration of topographic effects does not resolve the contra

dictory observations just made since, for each of the cases cited, 

the terrain is perceived as being very similar. Determination of the 

factors that influence height of mottling at these diverse sites is 

beyond the scope of this study. 

The data of Figure 19 are of importance, however, because they allow 

for establishing the probable extremes in extent of saturation by 

perched groundwater in loess typified by the various sites. Since 

saturation is a prerequisite for development of liquid silts, the limits 

thus defined also define the range in depth over which liquid silts 

could be encountered. The influence this has on their occurrence can 

be seen by comparing the liquid silt zones shown in Figures 20 and 21. 

Saturation is not the only factor controlling development of 

liquid silts. In a given deposit the maximum depth below the ground 

surface at which liquid silt would be expected to occur is a function 

of the soil unit weight and the resulting overburden pressure. This 

depth is called the "lower boundary of potential liquid silt" in 

Figures 20 and 21. This so—called boundary is the level at which 

a transition from liquid to semi-liquid consistency would theoretically 

take place as a consequence of increasing overburden pressure. Liquid 

conditions would exist above this level; semi-liquid conditions, below. 

Its location, for a soil of given clay content, is obtained from Figure 

17 by determining the overburden pressure at which LI = 0.75. For a 
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soil with 20% clay content and 18.0 kN/m^ (115 Ib/ft^) total unit 

weight, which represents the sites in east-central Iowa, the boundary 

is at a depth of approximately 3.23 in (10.6 ft). This is shown in 

Figure 20. 

Conditions depicted in Figure 21 differ in two respects from those 

in Figure 20. First, the zone of saturation in Figure 21 is far less 

extensive, and, second, the lower boundary of potential liquid silt in 

Figure 21 is based on a soil of lower unit weight. The situation thus 

created is representative of loess in western Iowa. For a soil with 

3 3 
20% clay content and 14.0 kN/m (89 lb/ft ) total unit weight, the 

lower boundary is located at a depth of 4.15 m (13.6 ft). 

Weathering processes, both physical and chemical, alter the upper

most soils in a typical loess deposit to the extent that liquid silts 

will probably not be found at shallow depths (where overburden pressures 

are minimum) even though the soil may be saturated. This was pointed 

out earlier and is accounted for in Figures 20 and 21 by showing the 

upper portion of the loess to be composed of a solum. The base of the 

solum is the minimum depth at which liquid silts would form. The 

solum is assumed to be of variable thickness because it is recognized 

that as loess becomes progressively thicker, the associated land 

surfaces generally become steeper, in which case thinner sola 

generally result [24, 26]. 

The shaded areas in Figures 20 and 21 show where the concurrent 

requirements for saturation and for overburden pressure being less than 

some threshold value are both satisfied. This defines the zone of 
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potential liquid silt. The solum may drastically reduce the extent of 

this zone in thin deposits as is evident in Figure 20. These two 

figures can be interpreted as follows: 

(i) Liquid silts will not occur in loess that is less than 

approximately 1.5 m (5 ft) thick as shown in Figure 20. 

(ii) Under conditions of maximum extent of saturation, 

liquid silts are limited to depths of from 1.37 m 

(4.5 ft) to 3.23 m (10.6 ft) as shown in Figure 

20. In thin loess, the liquid silt zone is 

bounded on the top by the solum and on the bottom 

by the underlying glacial till. As the loess 

thickens, overburden pressures limit downward 

progression of the lower boundary to depths no 

greater than 3.23 m (10.6 ft), and the upper 

boundary becomes a function of the height to which 

saturation exists. 

(iii) Under conditions of minimum depth of saturation, 

liquid silts would not be found at any location 

where loess thickness is greater than 4.6 m (15 ft) 

as shown in Figure 21. For loess between 1.5 m 

(5 ft) and 4.6 m (15 ft) thickness, the liquid 

silt would exist as a thin layer at the base of 

the loess. 

Thickness of loess in Iowa has been mapped and is shown in 

Figure 22. Using the interpretation made above and assuming the loess 
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in western Iowa has a minimal zone of saturation, one can conclude that 

the shaded portion of Figure 22 represents the area in which liquid 

silts may be encountered under existing conditions. This projected 

area is tentative and is, of course, affected by the several assumptions 

that have gone into the development of Figures 20 and 21. All the 

soils in this area are not loess: loess generally occupies only the 

upland positions. But all the loess in the area should be considered 

to have conditions favoring existence of liquid silt. The possibility 

of creating liquid silts artificially in areas where they do not exist 

naturally must not be overlooked. The loess of western Iowa would be 

particularly susceptible to this if water were made available through 

crop or lawn irrigation or water impoundment. 

Origin 

All liquid and semi-liquid silts that have been reported, including 

those investigated as a part of this study, have occurred as relatively 

distinct zones in loess deposits. All but three of the 14 separate 

sites involved have had these soft layers confined to the leached 

portion of the soil profile. Since the test method employed for 

determining the extent of carbonate leaching was a simple qualitative 

procedure measuring only a reaction to dilute hydrochloric acid, there 

is no way of knowing the degree to which leaching may have actually 

progressed. In other words, even the soils designated as unleached may 

have been partially leached, but not to the point that a reaction with 

acid could not be observed. The sites having the liquid silts in 

unleached soils were sampled by others so further tests could not be 
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performed as a part of the present investigation without obtaining 

additional samples; this was not done. 

The fact that carbonate leaching is prevalent in the soils which 

have liquid silts suggests that removal of carbonate in situ may be a 

mechanism promoting formation of the liquid silt condition. The process 

is envisioned as one in which calcium and magnesium carbonate, occurring 

as silt-size particles, and as coatings on other particles [29], react 

chemically with weak carbonic acid formed when gaseous carbon dioxide 

from the atmosphere dissolves in water. The reaction involving 

calcium carbonate [17] is 

H^O + COg 

f+ 

CaCOg + CO^ t Ca"*^ + 2HCO2. 

If there is a net movement of groundwater through the soil as with a 

fluctuating water table, the dissolved carbonate is leached. 

Since leaching removes soil solids, it is expected, first of 

all, that the particle size distribution would be altered to show an 

increase in clay content and, secondly, that the remaining soil 

particles would experience some relative movement or deformation, 

similar to that observed in secondary compression, simply resulting from 

increased contact stresses as the number of interparticle contacts 

is decreased. This would have an effect similar to aging, or delayed 

compression, as explained by Bjerrum [3] whereby void ratio decreases 

under constant applied stresses. This is depicted in Figure 23. It 
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must be remembered, however, that without the structural rearrange

ments, leaching itself would have the opposite effect because it 

brings about an increase in void ratio. 

The net change in void ratio that occurs as a result of these 

two phenomena is no doubt a function of carbonate content and over

burden stress, among other things. At low stress levels the delayed 

compression should be minimal, making the change in void ratio directly 

related to carbonate content. Overburden stresses at depths where 

liquid silts have been encountered are all considered low, being less 

than 100 kPa (2100 Ib/ft^). 

Also of significance with respect to low stress levels is the 

increase in void ratio associated with expansive clay minerals as 

compared to less expansive clays at the same stress level. X-ray 

diffraction (see Figure 8) revealed that montmorillonite was the 

predominant clay mineral in the liquid silt at Blairstown Site A. 

The hypothetical model for in situ formation of liquid silt in 

loess, which has been arrived at after considering all of these factors, 

comprises a material that is 

(i) initially calcareous, 

(ii) composed of silts and clays, with the predominant 

clay minerals being expansive, 

(iii) frequently saturated either by submergence 

or capillary rise, and 

(iv) subjected to overburden stresses of less than 

100 kPa (2100 Ib/ft^); 
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and a process that involves 

(i) collapse of the loess if it was initially 

susceptible to self-weight collapse, 

(ii) expansion of clay minerals, and 

(iii) leaching of carbonates, 

which results in 

(i) consolidation behavior typical of normally consolidating 

saturated clayey sediments, and 

(ii) a low density, high water content soil that, if 

disturbed, develops a consistency similar to 

that at the soil liquid limit. 

This model reflects an analysis of the combined data from all sites, 

but the detailed Study performed on samples from Blairstown Site À 

are the most informative. A review of these findings follows. 

Figures 7 and 13 contain one-dimensional consolidation test 

results from specimens located at various depths throughout the soil 

profile. From these test results and the vertical effective stress 

profile of Figure 10, it was determined that the soils here are 

normally consolidated. 

Weathering zones and variations with depth of clay content, natural 

water content, dry density, void ratio, and degree of saturation for 

this site are shown in Figure 24. The liquid silt zone is identified 

in this figure, and it can be seen that immediately below this zone the 

clay content, liquidity index, and void ratio all decrease. It is also 

at this depth that unleached soil was first encountered. 
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It is entirely possible that these changes reflect two separate 

loessial soils, differing perhaps because of changes in characteristics 

of the source material or because of alterations to the lower soil after 

its deposition. Results of X-ray diffraction studies show that clay 

mineralogy does not change with depth. The diffraction patterns are 

shown in Figure 8 for specimens taken from throughout the soil profile. 

If there are two separate deposits, their clay mineralogy is so similar 

as to make them indistinguishable. To reiterate, montmorillonite ic 

ttie predominant clay mineral. 

It is also possible that the entire deposit was initially relatively 

uniform, and that the changes are a result of the effects of weathering, 

particularly leaching, within the upper portion. In a situation like 

this, the assumption is often made that the lower soil reflects the 

properties and characteristics of the "unaltered" soil. 

Based on this assumption, it was possible to approximate the 

variation of void ratio with depth for the "original" calcareous 

deposit by using the average of the field compression portions of the 

e versus log curves for samples 5A-5.66 and 7.06, which are repre

sentative of the lower soil. Overburden pressures at various depths 

were obtained from Figure 10. (Variation of void ratio with depth may 

also be determined from the appropriate curve in Figure 17.) The void 

ratio-depth relationship based on field compression curves is shown in 

Figure 25. 

The same procedure was used to obtain the void ratio-depth relation

ship representative of the upper leached soil. This is also shown in 
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Figure 25. In this case, the field compression curve for sample 5A-3.33 

was used. These two curves represent the difference in consolidation 

behavior between typical unleached and leached loess soils. More 

precisely, the contrast in behavior reflects the difference in clay 

contents. 

Actual in situ void ratios from specimens throughout the profile 

were plotted to show if the theorized behavior models the actual 

behavior, and it can be seen that this data supports the assumption 

of an initial uniform deposit of calcareous loess which has subsequently 

been leached in the upper portion. 

Notice in Figure 25 that the transition between the two zones is 

relatively gradual and occurs over a distance of approximately 1.5 m 

Thermogravimetric analyses were performed on specimens at three 

different depths in this portion of the soil profile to determine 

carbonate content and its variation with depth. Results of these 

tests are shown in Figure 9, and the data have been plotted in Figure 

25 to clearly show the relationship. 

By using these values and by assuming the carbonate content of the 

specimen from the greatest depth is representative of the initial 

carbonate content, one can compute changes in void ratio that result 

from leaching. Furthermore, it is possible then to predict the void 

ratios of leached soil at selected depths by simply adjusting the initial 

(unleached) void ratios by the computed changes. For instance, there is 

a decrease in carbonate content from 10.7 to 6.9% between the specimens 
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at 4.85 m (15.9 ft) and at 3.90 m (12.8 ft), respectively. In 1.0 

m of soil, this represents a decrease of 0.58 kN of solids or a 

3 
corresponding decrease in solids volume of 0.02 m , using G = 2.70. 

At the 3.90 m (12.8 ft) depth, this decrease in solids volume would 

give a void ratio increase of 0.06, which, when added to the initial 

(unleached) void ratio of 0.73, gives a void ratio of 0.79 for the 

leached condition. The actual in situ void ratio was 0.80. 

Similarly, at 2.99 m (9.5 ft) depth the increase in void ratio 

above the theoretical value representing unleached conditions is 0.21, 

or an increase from 0.75 to 0.96, which compares to the actual in situ 

value of 0.95. 

This provides very strong supporting evidence that the deposit 

was initially relatively uniform and has subsequently been leached of 

carbonates in the upper portion, resulting in an increase in void ratio 

and a corresponding increase in saturation water content to the extent 

that the liquid limit of the leached soil has been approached. 

The difference in clay content between the leached and unleached 

soils also can be explained on the basis of carbonate leaching. The 

average particle size distribution of the unleached loess, which con

tains 10.7% CaCOg by weight, is 15.6% clay, 83.8% silt, and 0.6% sand. 

For the carbonate-free loess, the distribution is 21.2% clay, 78.4% 

silt, and 0.4% sand. If the carbonates exist only as silt-size 

particles, the clay content increase as a result of leaching is 2.1%, 

which is less than one-half the observed change. If, however, the 

carbonates exist both as individual grains and as part of a calcite-
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clay mixture that coats other grains as noted by Sheeler [29], then 

leaching would not only remove carbonate, it would free clay-size 

particles previously cemented in the mixture. Furthermore, the 

individual carbonate particles are likely to contain some clay-size 

mineral "impurities" that would contribute to an increase in clay 

content upon removal of the host carbonate. Inclusion of non-

carbonate particles would be expected whether the carbonates are 

secondary precipitates formed in situ or fragments of the original 

carbonate rock. Lohnes [20] found that carbonate concretions formed 

in loess contain up to 34% insoluble residue, and Goudge [11] reports 

that limestone bedrock in Canada, a possible source of carbonates found 

in Iowa soils that are either direct or indirect products of continental 

glaciation, may contain up to 50% non-carbonate minerals. 

Whatever mechanisms are involved, complete leaching of carbonates 

from these loess soils would lead to an increase in both clay content 

and void ratio. An increase in clay content gives an increase in liquid 

limit (see Figure 14); consequently, the changes in void ratio that 

accompany leaching must be large enough to give a saturation water 

content approaching the liquid limit; otherwise, a liquid silt will not 

develop. 
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SUMMARY AND CONCLUSIONS 

The terms "liquid silt" and "loess mush" have been used herein to 

designate low density, high water content soils encountered in loess 

deposits in Iowa and Missouri. Undisturbed samples of these soils are 

very soft; disturbed samples may actually flow. This behavior is a 

consequence of the void volume, which is a function of overburden 

pressure and the amount and type of clay, being sufficient to accommodate 

a saturation water content that is at or near the soil liquid limit. 

Because of the combination of high void volume and high water content, 

these soils presumably will have low undrained shear strengths. 

The liquidity index is used to quantify the consistency of liquid 

silts and thus is a convenient parameter for their identification. 

The maximum reported- value for -liquid silts is 1.0. — A value of^ 0.75 

is suggested as the minimum liquidity index for liquid silts in order 

to separate them from the somewhat stiffer semi-liquid silts. Liquid

ity index is a laboratory criterion based on a property of disturbed 

soil. There is a need to develop similar criteria based on in situ 

shear strength values so that objective field identification is possible. 

It has been shown that the liquid silts at the sites investigated 

occur in saturated, normally consolidated sediments, the consolidation 

behavior of which is known to be strongly influenced by clay type and 

amount. It is possible to predict the occurrence of liquid silts in 

similar normally consolidated loess deposits elsewhere in Iowa. This 

has been done, and the predictions have served as a basis for mapping 

the distribution of loessial soils in Iowa that may exhibit liquid silts. 
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Liquid silts may also exist in loess deposits that are not normally 

consolidated, but the distribution of these soils has not been deter

mined as a part of this study. 

The requirement for saturation appears to be a major factor 

limiting the areal distribution of liquid silts because there may not 

be many loess deposits that are saturated even occasionally at levels 

in the soil profile where overburden pressures are conducive to liquid 

silt formation. Because groundwater plays such an important role in 

development of liquid silts and because its location is also highly 

unpredictable on an area-wide basis, the proposed distribution of liquid 

silts must be considered as being suggestive of where liquid silts may 

occur, not where they are likely to occur. 

Liquid slLlts appear most frequehtly in leached loessial soils. 

Leaching is not a necessary requirement, however, since even calcareous 

loess would exhibit liquid silt conditions at the appropriate over

burden stress levels. But leaching can cause a significant increase 

in void ratio under constant stress conditions, leading to in situ 

formation of liquid silts under circumstances where they would not 

otherwise occur. 

Consolidation states of loess may vary significantly within a 

given deposit depending on the deposit thickness. This is shown in 

Figure 26, which reflects the findings of this investigation concerning 

saturated, normally consolidated loess and the findings of Olson [23] 

concerning previously unsaturated, collapsible low-density loess. The 

consolidation state of the solum was inferred from soil survey information 
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provided by the U.S. Department of Agriculture [32] by noting that the 

S-horizons, in general, have a high shrink-swell potential, indicating 

the presence of expansive clay minerals. Furthermore, the B-horizons 

have a blocky structure, which can be attributed to repeated cycles of 

wetting and drying [31]. Drying shrinkage would normally cause over-

consolidation in clayey soils. 

At some sites, depending on the extent of saturation, there is 

the potential for soils from different levels in the deposit to exhibit 

very different volume change behaviors. For a given applied load, 

these can range from relatively little volume change in stiff, normally 

consolidated or overconsolidated soils to significant volume change in 

soft, normally consolidated or collapsible soils. 
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APPENDIX B: SOIL INDEX PROPERTIES 
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Table Bl. Index properties of soils investigated 

Site/ Water Dry Solids Void 
Bore- Depth Weathering Content Density Specific Ratio 
hole m Zone % kg/m̂  Gravity e 

Blairstown lA 

2.29 MOL 31.6 1383 2.72 0.966 
2.82 MOL 30.9 1457 2.72 0.869 
3.41 MOL 31.1 1452 2.72 0.876 

3.94 MOU 27.7 1537 2.73 0.778 
4.27 MOU 27.0 1566 2.73 0.743 
4.78 MDU 25.5 —— 

4.93 MDU 26.5 1582 2.72 0.722 

Blairstown 2A 

1.88 MOL 32.3 1378 2.71 0.963 
2.54 MOL 29.6 1445 2.71 0.877 
3.22 MOL 33.0 1416 2.72 0.920 

3.73 MOU 27.4 1551 2.73 0.760 

Blairstown 3A 
1.91 MOL 29.7 1409 2.72 0.932 
2.52 MOL 31.3 1449 2.72 0.880 
3.15 MOL 33.3 1394 2.73 0.957 

3.81 MOL 30.1 1489 2.73 0.830 

Blairstown 4A 

1.63 MOL 32.8 1389 2.72 0.956 
2.57 MOL 32.2 1447 2.72 0.878 
2.87 MOL 32.7 1407 2.72 0.933 

3.53 MOU 29.2 1513 2.73 0.803 
3.96 UU 26.0 1590 2.72 0.933 

Blairstown 5A 

2.59 MOL 33.6 1383 2.72 0.965 
3.00 MOL 34.3 1393 2.71 0.946 
3.25 MOL 34.1 1384 2.71 0.958 

3.91 MDU 27.2 1513 2.73 0.802 
4.52 MDU 25.2 1600 2.71 0.946 
4.85 MDU 25.8 1585 2.72 0.714 

5.13 MDU-MOU 26.9 1563 2.72 0.742 
5.56 MDU 26.5 1583 2.72 0.715 
6.10 MDU-MOU 26.4 1590 2.72 0.712 

6.55 MDU-MOU 25.6 1608 2.72 0.691 
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Saturation 
% LL PL LI Sand Silt 2ym clay 

89.0 43.2 18.9 0.52 0.1 72.0 27.9 
96.8 39.0 20.0 0.57 0.1 78.4 21.5 
96.6 32.8 21.5 0.85 0.1 84.2 15.7 

97.3 30.8 20.4 0.70 1.5 84.3 14.2 
99.3 30.1 21.2 0.65 0.5 85.3 14.2 

99.9 28.4 20.6 0.75 0.1 82.5 17.4 

90.9 46.3 20.1 0.47 0.2 71.8 28.0 
91.7 36.8 20.1 0.57 0.5 75.9 23.6 
97.5 37.8 19.6 0.74 0.2 77.4 22.4 

98.6 31.2 21.6 0.61 0.4 83.6 16.0 

86.7 38.7 21.2 0.31 _ - 0.2 72.9  ̂ _26,9 
97.0 41.4 19.7 0.54 0.2 77.4 22.4 
94.9 37.3 20.6 0.76 0.1 79.8 20.1 

98.8 32.2 21.1 0.81 0.3 83.7 16.0 

93.1 48.6 21.0 0.43 0.0 92.7 27.3 
99.5 39.1 20.4 0.63 0.1 76.0 23.9 
95.3 35.2 21.5 0.82 0.1 81.3 18.6 

99.1 32.4 21.7 0.70 0.1 82.6 16.9 
99.7 32.6 21.3 0.42 0.5 81.8 17.7 

94.7 39.3 20.7 0.70 0.3 78.6 21.1 
98.2 36.4 21.3 0.86 0.3 78.0 21.7 
96.5 35.6 20.6 0.90 0.5 78.7 20.8 

92.6 30.7 21.8 0.61 0.7 83.6 15.7 
98.2 36.4 20.2 0.56 0.6 82.8 16.6 
98.0 30.9 21.4 0.46 0.7 84.1 15.2 

98.5 30.3 22.0 0.58 0.4 84.2 15.4 
100.0 29.2 20.5 0.69 0.5 83.4 16.1 
100.0 29.1 21.3 0.65 0.7 86.3 13.0 

100-0 29.8 20.1 0.57 0.7 82.0 17.3 
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Table Bl. (Continued) 

Site/ 
Bore
hole 

Depth 
m 

Weathering 
Zone 

Water 
Content 

Dry 
Density 
kg/m3 

Solids 
Specific 
Gravity 

Void 
Ratio 

e 

Blairstown 6A 

2.64 
3.45 
4.06 

4.62 
5.13 

Blairstown 7A 

1.72 
2 . 1 8  
2.87 

3.60 

Blairstown 8A 

1.27 
2 . 1 8  
2.49 

3.23 

Blairstown 9A 

1.30 
2 . 1 1  
2.54 

3.15 

Blairstown 2B 

2 . 1 8  
2.79 
3.45 

4.01 
4.62 
5.23 

Blairstown 3B 

1.67 
2 .28  
2.89 

3.48 
4.11 
4.72 

MOL 
MOL 
MOU 

MOU 
MDU 

MOL 
MOL 
MOL 

MOU 

MOL 
MOL 
MOL 

MOL 

MOL 
MOL 
MOL 

MOL 

MOL 
MOL 
MOL 

MOU 
MDU 
MDU 

MOL 
MOL 
MOU 

MDU 
MDU 

MDU-MDL 

31.0 
32.9 
24.6 

24.2 
2 6 . 2  

29.1 
30.5 
30.8 

30.0 

27.2 
28.9 
29.4 

31.3 

2 6 . 0  
32.7 
35.5 

29.0 

30.4 
33.0 
32.6 

27.8 
23.3 
25.1 

29.8 
33.3 
29.2 

27.5 
25.2 
2 6 . 8  

1435 
1398 
1602 

1638 
1587 

1409 
1433 
1443 

1489 

1451 
1458 
1469 

1452 

1427 
1403 
1356 

1484 

1428 
1386 
1425 

1518 
1635 
1585 

1456 
1381 
1479 

1525 
1562 
1488 

2.71 
2.72 
2.73 

2.71 
2.72 

2.71 
2.72 
2.71 

2.71 

2.71 
2.70 
2. 69 

2.71 

2.71 
2.70 
2.70 

2.73 

2.72 
2.73 
2.72 

2.72 

2.73 

2.72 
2.72 
2.73 

2.73 
2.71 
2.72 

0,888 
0.942 
0.706 

0.653 
0,713 

0.924 
0.897 
0,884 

0,823 

0.864 
0.855 
0.832 

0 .862  

0.895 
0.927 
0.993 

0.840 

0.907 
0.971 
0.914 

0.794 

0.725 

0.870 
0.968 
0.844 

0.788 
0.736 
0.825 
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Saturation 
% LL PL LI Sand Silt 2pm clay 

94.6 42.0 19.6 0.51 0.3 75.9 23.8 
94.8 36.3 20.7 0.78 0.2 79.3 20.5 
95.1 31.8 21.1 0.33 0.4 81.3 18.3 

100.0 28.6 20.7 0.44 0.4 85.7 13.9 
100.0 29.0 20.5 0.67 0.6 86.3 13.1 

85.4 47.8 19.5 0.34 0.6 71.8 27.6 
92.5 42.0 19.0 0.50 0.1 76.3 23.6 
94.8 40.4 20.0 0.53 0.3 77.6 22.1 

99.0 32.5 21.2 0.78 0.2 82.3 17.5 

85.3 50.2 20.4 0.23 0.1 69.8 30.1 
91.3 39.1 19.6 0.48 0.2 78.2 21.6 
95.1 39.2 18.9 0.52 0.3 76.5 23.2 

98.2 33.1 21.2 0.85 0.3 81.7 18.0 

78.6 49.1 19.8 0.21 0.0 73.2 26.8 
95.4 39.0 20.1 0.67 0.1 79.3 20.6 
96.7 36.1 20.3 0.96 0.2 78.4 21.4 

94.3 31.6 21.3 0.75 0.1 81.7 18.2 

91.3 42.9 19.7 0.46 0.4 73.5 26.1 
93.0 41.7 19.3 0.61 0.4 74.9 24.7 
96.9 38.5 20-4 0.67 0.2 78.4 21.4 

95.2 32.5 20.8 0.60 0.2 81.2 18.6 

94.7 35.6 21.3 0.27 0.1 78.4 21.5 

93.2 39.5 19.6 0.51 0.1 74.8 25.1 
93.6 37.9 21.2 0.73 0.0 78.7 21.3 
94.3 32.0 22.4 0.70 

95.2 34.6 21.4 0.46 
92.6 33.6 21.3 0.31 
88.2 36.3 19.9 0.42 
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Table Bl. (Continued) 

Site/ Water Dry- Solids Void 
Bore Depth Weathering Content Density Specific Ratio 
hole m Zone % kg/m3 Gravity e 

Gilman No. 1 

2.56 MOL 31.6 1437 2.72 0.891 
2.84 MOL 31.9 1459 2.71 0.855 
3.30 MOL 33.5 1409 2.71 0.924 

3.45 MOL 34.6 1388 2.72 0.957 
4.03 MOL 31.7 1467 2.71 0.847 

State Center No. 2 

0.97 MOL 25.8 1287 2.72 1.113 
1.63 MOL 30.5 1439 2.72 0.894 
2.29 MOL 34.9 1368 2.73 0.994 

3.00 MOU 30.7 1442 2.73 0.896 
3.45 MDU 29.1 1493 2.73 0.828 
4.06 MDU 29.0 1495 2.74 0.836 
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Saturation 
% LL PL LI Sand Silt 2ym clay 

96.4 43.0 20.0 0.51 0.0 73.2 26.8 
100.0 44.6 19.6 0.49 0.1 71.9 28.0 
98.3 40.9 21.0 0.63 0.0 73.6 26.4 

98.2 39.9 20.3 0.73 0.0 74.2 25.8 
100.0 36.2 19.7 0.73 1.7 74.6 23.7 

63.0 49.3 22.7 0.12 0.0 68.7 31,3 
93.1 45-0 20.6 0.41 0.1 71.4 28.5 
95.9 38.9 20.4 0.79 0.0 76.7 23.3 

93.6 36.3 20.0 0.66 0.3 78.2 21.5 
96.0 37.0 19.0 0.56 0.0 77.2 22.8 
95.2 38.7 20.5 0.47 0.3 77.5 22.2 
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APPENDIX C: ONE-DIMENSIONAL CONSOLIDATION TEST RESULTS 
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Table Cl. One-dimensional consolidation test sample properties 

Initial Initial Solids 
Sample Void Water Specific 

Site Borehole Depth Ratio Content Gravity 
m e w,% o 

Blairstown A 1 5.11 0.730 25.8 2.71 

2 2.97 0.901 29.2 2.71 

3 2.72 0.882 30.4 2.72 

3 3.33 0.970 33.0 2.73 

5 2.77 0.930 36.4 2.72 

5 3.33 0.978 31.5 2.71 

5 5.66 0.708 26.1 2.72 

5 7.06 0.670 25.7 2.72 

- 6 3.07 0.920 32.7 2.72 

State Center 2 1.91 0.959 32.9 2.72 

2 4.24 0.795 27.0 2.74 
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Figure Cl. One-dimensional consolidation test results 
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APPENDIX D: PIEZOMETER DATA 
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ORIGINAL GROUND ELEV. 

REMOVEABLE PLUG 

# [SOLID WALL 
0 h / 2  I N C H  D I A .  P V C  P I P E  

SOIL BACKFILL 

4 INCH DIA. BOREHOLE 

SLOTTED WALL 
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WRAPPED WITH FILTER 

FABRIC 

MORTAR SAND BACKFILL 

PLUG 

Dimensions are given in Table D1. 

Figure D1. Piezometer construction details 
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Table Dl. Piezometer installation details 

Elevation 
A Distance m (ft) Date of 

Site m (ft) abed Installation 

Oilman 304.8 (1000) 0.91 (3.0) 0.15 (0.5) 6.40 (21.0) 3.05 (10.0) 6-3-82 

State Center 326.1 (1070) 0.0 (0.0) 0.15 (0.5) 9.91 (32.5) 4.57 (15.0) 6-1-82 

Blairstown 
Site A 

289.6 (950) 1.37 (4.5) 0.15 (0.5) 8.08 (26.5) 3.05 (10.0) 6-14-82 

Blairstown 
Site B 

285.6 (937) 0.91 (3.0) 0.15 (0.5) 8.38 (27.5) 3.05 (10.0) 8-19-82 
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Table D2. Piezometer data 

Depth Depth 
Date m (ft) Date m (ft) 

Gilman Blairstown Site A 
(heavy rainfall 6--14) 

6-3-82 3.47 (11.4) 6-16-82 0.76 (2.5) 

6—4 3.57 (11.7) 6-17 0.46 (1.5) 

6-7 3.57 (11.7) 7-23 2.35 (7.7) 

6-10 3.60 (11.8) 8-12 2.80 (9.2) 

6-16 3.51 (11.5) 8-16 3.08 (10.1) 

7-23 3.41 (11.2) 9-15 3.26 (10.7) 

8-12 3.96 (13.0) 10-26 3.90 (12.8) 

9-15 4.27 (14.0) 11-28 2.83 (9.3) 

10-26 4.88 (16.0) 12-23 2.10 (6.9) 

11-28 4.75 (15.6) 1-20-83 2.44 (8.0) 

12-23 4.42 (14.5) 2-24 2.13 (7.0) 

1-20-83 4.21 (13.8) 3-23 3.02 (9.9) 

2-24 4.18 (13.7) 4-26 0.64 (2.1) 

4-26 2.74 (9.0) 6-28 2.07 (6.8) 

6-28 3.96 (13.0) 8—4 2.74 (9.0) 



www.manaraa.com

95 

Depth Depth 
Date m (ft) Date m (ft) 

State Center Blairstown Site B 

6—1—82 2.32 (7.6) 8—24—82 3.35 (11.0) 

6-2 2.04 (6.7) 9-15 3.60 (11.8) 

6-16 1.65 (5.4) 10-26 3.69 (12.1) 

6-18 1.92 (6.3) 11-28 2.77 (9.1) 

7-23 2.35 (7.7) 12-23 2.41 (7.9) 

8-12 2.68 (8.8) 1-20-83 2.74 (9.0) 

9-15 2.87 (9.4) 2-24 2.07 (6.8) 

10-26 2.90 (9.5) 3-23 2.68 (8.8) 

11-28 2.59 (8.5) 4-26 1.52 (5.0) 

12-23 2.53 (8.3) 6-28 3.05 (10.0) 

1—20—83 2.62 (8.6) 

2-24 2.26 (7.4) 

3-23 2.47 (8.1) 

4-26 2.35 (7.7) 

6-28 2.59 (8.5) 
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